The NIH will no longer award funding to new grant proposals that rely exclusively on animal models. This policy forces a shift towards New Approach Methodologies (NAMs), such as organoids and organ-on-chips, serving as a major catalyst for innovation and adoption in the preclinical testing space.

Related Insights

AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.

Non-human primate models are poor predictors of human immunogenicity. The industry has shifted to human-relevant ex vivo assays using whole blood or PBMCs. These tests can assess risks like complement activation upfront, enabling proactive protein engineering to improve a drug's safety profile.

Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.

The National Defense Authorization Act (NDAA) has elevated biotech to a national security asset, alongside AI and quantum computing. This shift creates new funding opportunities through a dedicated Department of Defense (DOD) biotech office, distinct from traditional NIH grants.

The market is currently ignoring the long-term impact of deep cuts to research funding at agencies like the NIH. While effects aren't immediate, this erosion of foundational academic science—the "proving ground" for new discoveries—poses a significant downstream risk to the entire biotech and pharma innovation pipeline.

The focus in advanced therapies has shifted dramatically. While earlier years were about proving clinical and technological efficacy, the current risk-averse funding climate has forced the sector to prioritize commercial viability, scalability, and the industrialization of manufacturing processes to ensure long-term sustainability.

The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.

The bottleneck for AI in drug development isn't the sophistication of the models but the absence of large-scale, high-quality biological data sets. Without comprehensive data on how drugs interact within complex human systems, even the best AI models cannot make accurate predictions.

CZI's virtual cell models act as a computational "model organism," enabling scientists to run high-risk experiments in silico. This approach dramatically lowers the cost and time required to test novel ideas, encouraging more ambitious research that might otherwise be prohibitive.

An FDA-style regulatory model would force AI companies to make a quantitative safety case for their models before deployment. This shifts the burden of proof from regulators to creators, creating powerful financial incentives for labs to invest heavily in safety research, much like pharmaceutical companies invest in clinical trials.