When planning treatment for patients who will receive multiple antibody-drug conjugates (ADCs), the prevailing clinical strategy is to focus on alternating the drug's payload (e.g., a tubulin inhibitor vs. a topoisomerase I inhibitor). This approach is believed to be more effective at overcoming resistance than alternating the cell-surface target.

Related Insights

Patients whose ovarian cancer progresses on the folate-targeted ADC mirvetuximab may still respond to a subsequent folate-targeted ADC with a different cytotoxic payload. This suggests that the folate receptor alpha target remains viable and that resistance may be payload-specific, opening new sequencing strategies.

The TROPION-PanTumor01 study showed that patients who progressed on the TROP2-ADC sacituzumab govitecan still achieved responses to a second TROP2-ADC, Dato-DXD. This suggests that targeting the same antigen with a different payload can overcome initial resistance, informing future treatment sequencing.

Experts question the efficacy of sequencing ADCs like EV (Nectin-4 target) and DV (HER2 target) because they share the same MMAE chemo payload. Since resistance is often tied to the payload, not the target antibody, switching targets may not overcome resistance, though anecdotal responses have been observed.

Rather than moving through distinct lines of therapy, a future strategy could involve an "ADC switch." When a patient progresses on an ADC-IO combination, the IO backbone would remain while the ADC is swapped for one with a different, non-cross-resistant mechanism, adapting the treatment in real-time.

Emerging data shows that a second ADC, particularly one with the same payload, often has limited efficacy. This suggests clinicians must be highly strategic in selecting the first ADC, as it may be their most impactful opportunity for this class of drugs.

Contrary to concerns about cross-resistance between HER2 antibody-drug conjugates (ADCs), retrospective data shows TDM-1 remains effective after progression on TDXD. This suggests the different cytotoxic payloads are key, allowing for effective sequencing and challenging the assumption that progression on one ADC class member precludes using another.

As multiple effective Antibody-Drug Conjugates (ADCs) become available, the primary clinical challenge is no longer *if* they work, but *how* to use them best. Key unanswered questions involve optimal sequencing, dosing for treatment versus maintenance, and overall length of therapy, mirroring issues already seen in breast cancer.

The differing efficacy and toxicity profiles of TROP2 ADCs like sacituzumab govitecan and Dato-DXD suggest that the drug's linker and payload metabolism are crucial determinants of clinical outcome. This indicates that focusing solely on the target antigen is an oversimplification of ADC design and performance.

Historically, therapies for platinum-resistant ovarian cancer were so ineffective that the order of administration was irrelevant. With the advent of multiple active ADCs, the concept of treatment sequencing and potential cross-resistance based on payloads or targets has become a critical, and entirely new, clinical consideration for this disease.

An antibody-drug conjugate's (ADC) effectiveness is capped by its chemotherapy payload. In prostate cancer, topoisomerase inhibitors have a poor track record. Therefore, ADCs using this payload face an uphill battle compared to those with proven payloads like microtubule inhibitors (taxanes).