Experts question the efficacy of sequencing ADCs like EV (Nectin-4 target) and DV (HER2 target) because they share the same MMAE chemo payload. Since resistance is often tied to the payload, not the target antibody, switching targets may not overcome resistance, though anecdotal responses have been observed.

Related Insights

An expert argues the path to curing metastatic cancer may mirror pediatric ALL's history: combining all highly active drugs upfront. Instead of sequencing treatments after failure, the focus should be on powerful initial regimens that eradicate cancer, even if it means higher initial toxicity.

The panel reviews advanced, second-line ADC trials in China using novel targets and payloads. An expert remarks that these are the drugs and questions the US and Europe may only begin to study in two to three years, signaling a significant shift in the global oncology R&D landscape.

With highly active agents yielding 30% complete response rates, the immediate goal should be to cure more patients by exploring potent combinations upfront. While sequencing minimizes toxicity, an ambitious combination strategy, such as ADC doublets, offers the best chance to eradicate disease and should be prioritized in clinical trials.

Actuate employed a master protocol that tested their drug alongside eight different standard-of-care chemotherapies in patients who had already failed them. This design efficiently demonstrated the drug's ability to reverse chemo-resistance across multiple histologies, informing their Phase 2 strategy.

The failure of the TROPiCS-04 trial for sacituzumab govitecan may not indicate the TROP2 ADC class is ineffective. Experts suggest problems with dosing and toxicity management (e.g., neutropenia) during the trial could be the real culprit, arguing that the drug class still holds promise.

Rather than moving through distinct lines of therapy, a future strategy could involve an "ADC switch." When a patient progresses on an ADC-IO combination, the IO backbone would remain while the ADC is swapped for one with a different, non-cross-resistant mechanism, adapting the treatment in real-time.

Experts question if HER2 status truly predicts ADC efficacy in urothelial cancer. The benefit seen across low-expression levels suggests HER2's main role may be simply to target the chemo payload to cancer cells, rather than indicating a specific biological dependency.

Clinical trials combining potent ARPIs like abiraterone and enzalutamide have consistently failed. Once the androgen receptor pathway is maximally suppressed by one agent, adding another with a similar mechanism provides no further clinical advantage, much like hammering a nail that is already flush with the wood.

The differing efficacy and toxicity profiles of TROP2 ADCs like sacituzumab govitecan and Dato-DXD suggest that the drug's linker and payload metabolism are crucial determinants of clinical outcome. This indicates that focusing solely on the target antigen is an oversimplification of ADC design and performance.

Experts believe the stark difference in complete response rates (5% vs 30%) between two major ADC trials is likely due to "noise"—variations in patient populations (e.g., more upper tract disease) and stricter central review criteria, rather than a fundamental difference in the therapies' effectiveness.