The current focus on building massive, centralized AI training clusters represents the 'mainframe' era of AI. The next three years will see a shift toward a distributed model, similar to computing's move from mainframes to PCs. This involves pushing smaller, efficient inference models out to a wide array of devices.
The AI market is becoming "polytheistic," with numerous specialized models excelling at niche tasks, rather than "monotheistic," where a single super-model dominates. This fragmentation creates opportunities for differentiated startups to thrive by building effective models for specific use cases, as no single model has mastered everything.
The next major evolution in AI will be models that are personalized for specific users or companies and update their knowledge daily from interactions. This contrasts with current monolithic models like ChatGPT, which are static and must store irrelevant information for every user.
While AI inference can be decentralized, training the most powerful models demands extreme centralization of compute. The necessity for high-bandwidth, low-latency communication between GPUs means the best models are trained by concentrating hardware in the smallest possible physical space, a direct contradiction to decentralized ideals.
Models like Gemini 3 Flash show a key trend: making frontier intelligence faster, cheaper, and more efficient. The trajectory is for today's state-of-the-art models to become 10x cheaper within a year, enabling widespread, low-latency, and on-device deployment.
The era of guaranteed progress by simply scaling up compute and data for pre-training is ending. With massive compute now available, the bottleneck is no longer resources but fundamental ideas. The AI field is re-entering a period where novel research, not just scaling existing recipes, will drive the next breakthroughs.
The massive investment in data centers isn't just a bet on today's models. As AI becomes more efficient, smaller yet powerful models will be deployed on older hardware. This extends the serviceable life and economic return of current infrastructure, ensuring today's data centers will still generate value years from now.
Instead of relying solely on massive, expensive, general-purpose LLMs, the trend is toward creating smaller, focused models trained on specific business data. These "niche" models are more cost-effective to run, less likely to hallucinate, and far more effective at performing specific, defined tasks for the enterprise.
Beyond the simple training-inference binary, Arm's CEO sees a third category: smaller, specialized models for reinforcement learning. These chips will handle both training and inference, acting like 'student teachers' taught by giant foundational models.
Block's CTO believes the key to building complex applications with AI isn't a single, powerful model. Instead, he predicts a future of "swarm intelligence"—where hundreds of smaller, cheaper, open-source agents work collaboratively, with their collective capability surpassing any individual large model.
The true commercial impact of AI will likely come from small, specialized "micro models" solving boring, high-volume business tasks. While highly valuable, these models are cheap to run and cannot economically justify the current massive capital expenditure on AGI-focused data centers.