Contrary to the narrative of a simple "tech race," the assessment is that China is already ahead in physical AI and supply chain capabilities. The expert warns that this gap is not only expected to last three to five years but may widen at an accelerating rate, posing a significant long-term competitive challenge for the U.S.
The US AI strategy is dominated by a race to build a foundational "god in a box" Artificial General Intelligence (AGI). In contrast, China's state-directed approach currently prioritizes practical, narrow AI applications in manufacturing, agriculture, and healthcare to drive immediate economic productivity.
Facing semiconductor shortages, China is pursuing a unique AI development path. Instead of competing directly on compute power, its strategy leverages national strengths in vast data sets, a large talent pool, and significant power infrastructure to drive AI progress and a medium-term localization strategy.
The US won World War II largely due to its unparalleled manufacturing capacity. Today, that strategic advantage has been ceded to China. In a potential conflict, the US would face an adversary that mirrors its own historical strength, creating a critical national security vulnerability.
The belief that China's manufacturing advantage is cheap labor is dangerously outdated. Its true dominance lies in a 20-year head start on manufacturing autonomy, with production for complex products like the PlayStation 5 being 90% automated. The US outsourced innovation instead of automating domestically.
The US-China tech rivalry spans four arenas: creating technology, applying it, installing infrastructure, and self-sufficiency. While the U.S. excels at creating foundational tech like AI frameworks and semiconductors, China is leading in its practical application (e.g., robotics), installing digital infrastructure globally, and achieving resource independence.
Contrary to their intent, U.S. export controls on AI chips have backfired. Instead of crippling China's AI development, the restrictions provided the necessary incentive for China to aggressively invest in and accelerate its own semiconductor industry, potentially eroding the U.S.'s long-term competitive advantage.
China is compensating for its deficit in cutting-edge semiconductors by pursuing an asymmetric strategy. It focuses on massive 'superclusters' of less advanced domestic chips and creating hyper-efficient, open-source AI models. This approach prioritizes widespread, low-cost adoption over chasing the absolute peak of performance like the US.
While the West may lead in AI models, China's key strategic advantage is its ability to 'embody' AI in hardware. Decades of de-industrialization in the U.S. have left a gap, while China's manufacturing dominance allows it to integrate AI into cars, drones, and robots at a scale the West cannot currently match.
While the U.S. leads in closed, proprietary AI models like OpenAI's, Chinese companies now dominate the leaderboards for open-source models. Because they are cheaper and easier to deploy, these Chinese models are seeing rapid global uptake, challenging the U.S.'s perceived lead in AI through wider diffusion and application.
From 2001 onwards, while the U.S. was militarily and economically distracted by the War on Terror, China executed a long-term strategy. It focused on acquiring Western technology and building indigenous capabilities in AI, telecom, and robotics, effectively creating a rival global economic system.