Scientific research is being transformed from a physical to a digital process. Like musicians using GarageBand, scientists will soon use cloud platforms to command remote robotic labs to run experiments. This decouples the scientist from the physical bench, turning a capital expense into a recurring operational expense.

Related Insights

Powerful AI models for biology exist, but the industry lacks a breakthrough user interface—a "ChatGPT for science"—that makes them accessible, trustworthy, and integrated into wet lab scientists' workflows. This adoption and translation problem is the biggest hurdle, not the raw capability of the AI models themselves.

Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.

After a decade of abundant "growth capex" building new infrastructure, the economic pendulum is swinging towards "maintenance capex." This creates a massive, overlooked opportunity for technologies that service existing assets, like predictive software, acoustic sensors, and remote repair robots.

The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.

A "software-only singularity," where AI recursively improves itself, is unlikely. Progress is fundamentally tied to large-scale, costly physical experiments (i.e., compute). The massive spending on experimental compute over pure researcher salaries indicates that physical experimentation, not just algorithms, remains the primary driver of breakthroughs.

The future of valuable AI lies not in models trained on the abundant public internet, but in those built on scarce, proprietary data. For fields like robotics and biology, this data doesn't exist to be scraped; it must be actively created, making the data generation process itself the key competitive moat.

Historically, labor costs dwarfed software spending. As AI automates tasks, software budgets will balloon, turning into a primary corporate expense. This forces CFOs to scrutinize software ROI with the same rigor they once applied only to their workforce.

The evolution from simple voice assistants to 'omni intelligence' marks a critical shift where AI not only understands commands but can also take direct action through connected software and hardware. This capability, seen in new smart home and automotive applications, will embed intelligent automation into our physical environments.

A key strategy for labs like Anthropic is automating AI research itself. By building models that can perform the tasks of AI researchers, they aim to create a feedback loop that dramatically accelerates the pace of innovation.

Moving from a science-focused research phase to building physical technology demonstrators is critical. The sooner a deep tech company does this, the faster it uncovers new real-world challenges, creates tangible proof for investors and customers, and fosters a culture of building, not just researching.