Cohere's Chief AI Officer, Joelle Pineau, finds the concept of continual learning problematic because the research community lacks a universally agreed-upon problem definition, making it difficult to measure progress, unlike more standardized research areas like AI memory.
The popular conception of AGI as a pre-trained system that knows everything is flawed. A more realistic and powerful goal is an AI with a human-like ability for continual learning. This system wouldn't be deployed as a finished product, but as a 'super-intelligent 15-year-old' that learns and adapts to specific roles.
Solving key AI weaknesses like continual learning or robust reasoning isn't just a matter of bigger models or more data. Shane Legg argues it requires fundamental algorithmic and architectural changes, such as building new processes for integrating information over time, akin to an episodic memory.
AI struggles with long-horizon tasks not just due to technical limits, but because we lack good ways to measure performance. Once effective evaluations (evals) for these capabilities exist, researchers can rapidly optimize models against them, accelerating progress significantly.
Many AI projects fail to reach production because of reliability issues. The vision for continual learning is to deploy agents that are 'good enough,' then use RL to correct behavior based on real-world errors, much like training a human. This solves the final-mile reliability problem and could unlock a vast market.
The current focus on pre-training AI with specific tool fluencies overlooks the crucial need for on-the-job, context-specific learning. Humans excel because they don't need pre-rehearsal for every task. This gap indicates AGI is further away than some believe, as true intelligence requires self-directed, continuous learning in novel environments.
Karpathy argues against the hype of an imminent "year of agents." He believes that while impressive, current AI agents have significant cognitive deficits. Achieving the reliability of a human intern will require a decade of sustained research to solve fundamental problems like continual learning and multimodality.
Demis Hassabis argues that current LLMs are limited by their "goldfish brain"—they can't permanently learn from new interactions. He identifies solving this "continual learning" problem, where the model itself evolves over time, as one of the critical innovations needed to move from current systems to true AGI.
The key to continual learning is not just a longer context window, but a new architecture with a spectrum of memory types. "Nested learning" proposes a model with different layers that update at different frequencies—from transient working memory to persistent core knowledge—mimicking how humans learn without catastrophic forgetting.
A major flaw in current AI is that models are frozen after training and don't learn from new interactions. "Nested Learning," a new technique from Google, offers a path for models to continually update, mimicking a key aspect of human intelligence and overcoming this static limitation.
The perceived need for a new "continual learning" architecture is overstated. Current models can already achieve this functionally by building their own tools and apps based on new information. This reframes the challenge from a fundamental research problem to a practical prompt engineering and application design issue.