The company's platform creates drug microparticles large enough for tumor retention but with a massive surface area for sustained drug release. This is counterintuitive to typical engineering, where surface area is increased by making particles smaller, and it forms the basis of their intellectual property.
The core innovation is a foundational technology that allows the company to rapidly create new products. By changing the drug, release profile (days, weeks, or months), and physical format (implant, injectable), they can address numerous surgical needs, de-risking the business and creating a scalable pipeline.
By delivering a high, sustained local drug concentration, Nenology's platform shifts cancer cell death from a passive process (apoptosis) to immunogenic cell death. This releases antigens that actively prime the immune system, creating a secondary anti-tumor effect and potentially boosting the efficacy of other immunotherapies.
By reformulating existing oncology drugs, Nenology uses the streamlined 505(b)(2) regulatory pathway, de-risking and accelerating development. Simultaneously, their composition-of-matter patents provide strong intellectual property protection typically associated with entirely new chemical entities, creating a unique strategic advantage.
Accession's second product is a bispecific antibody that binds to all cancer cells. While this would be dangerously toxic if delivered systemically, their targeted virus delivery system ensures it is only produced inside the tumor. This strategy makes previously "undruggable" therapeutic concepts viable.
For years, major pharmaceutical companies dismissed intratumoral therapy as "off strategy." This sentiment is now changing due to better tumor access and the urgent need for less toxic combination therapies. This market shift is creating new partnering interest in Nenology's platform after years of facing strategic objections.
Historically, intratumoral therapy was limited by the physical difficulty of reaching tumors. The rise of a new discipline, Interventional Oncology, has largely solved this access problem. The critical bottleneck is now the lack of drugs specifically designed and optimized for local delivery and sustained retention within the tumor.
Actuate’s drug was designed to be highly lipophilic (fat-soluble) to cross the blood-brain barrier for CNS treatment. This same property proved crucial for its success in oncology, as it allows the drug to easily penetrate cancer cell membranes and reach the nucleus.
Instead of just killing cancer cells, the primary mechanism is to insert a gene that forces the infected cell to produce and secrete a potent drug, like an anti-PD-L1 antibody. This creates a hyper-concentrated therapeutic effect directly in the tumor microenvironment, a concept termed "molecular surgery."
All therapeutic discoveries fall into two types. The first is a biological insight, where the challenge is to find a way to drug it. The second is a technical advancement, like a new platform technology, where the challenge is to find the right clinical application for it. This clarifies a startup's core problem.
The future of biotech moves beyond single drugs. It lies in integrated systems where the 'platform is the product.' This model combines diagnostics, AI, and manufacturing to deliver personalized therapies like cancer vaccines. It breaks the traditional drug development paradigm by creating a generative, pan-indication capability rather than a single molecule.