The primary bottleneck for increasing DRAM supply is a "clean room constraint"—a physical shortage of space in existing fabs to install new manufacturing equipment. This limitation means that even with massive investment, significant new wafer capacity is unlikely to come online meaningfully before 2028.
Unlike past cycles driven solely by new demand (e.g., mobile phones), the current AI memory super cycle is different. The new demand driver, HBM, actively constrains the supply of traditional DRAM by competing for the same limited wafer capacity, intensifying and prolonging the shortage.
The AI industry's growth constraint is a swinging pendulum. While power and data center space are the current bottlenecks (2024-25), the energy supply chain is diverse. By 2027, the bottleneck will revert to semiconductor manufacturing, as leading-edge fab capacity (e.g., TSMC, HBM memory) is highly concentrated and takes years to expand.
While energy supply is a concern, the primary constraint for the AI buildout may be semiconductor fabrication. TSMC, the leading manufacturer, is hesitant to build new fabs to meet the massive demand from hyperscalers, creating a significant bottleneck that could slow down the entire industry.
With new factory capacity years away, the only immediate lever for increasing DRAM supply is "node migration." This involves shifting production to more advanced manufacturing processes (like 1B and 1C) that can produce more memory bits per silicon wafer. The speed of this migration is the critical factor for easing supply.
The critical constraint on AI and future computing is not energy consumption but access to leading-edge semiconductor fabrication capacity. With data centers already consuming over 50% of advanced fab output, consumer hardware like gaming PCs will be priced out, accelerating a fundamental shift where personal devices become mere terminals for cloud-based workloads.
The 2024-2026 AI bottleneck is power and data centers, but the energy industry is adapting with diverse solutions. By 2027, the constraint will revert to semiconductor manufacturing, as leading-edge fab capacity is highly concentrated and takes years to expand.
Producing specialized High-Bandwidth Memory (HBM) for AI is wafer-intensive, yielding only a third of the memory bits per wafer compared to standard DRAM. As makers shift capacity to profitable HBM, they directly reduce the supply available for consumer electronics, creating a severe shortage.
Despite record profits driven by AI demand for High-Bandwidth Memory, chip makers are maintaining a "conservative investment approach" and not rapidly expanding capacity. This strategic restraint keeps prices for critical components high, maximizing their profitability and effectively controlling the pace of the entire AI hardware industry.
Despite record capital spending, TSMC's new facilities won't alleviate current AI chip supply constraints. This massive investment is for future demand (2027-2028 and beyond), forcing the company to optimize existing factories for short-term needs, highlighting the industry's long lead times.
Today's DRAM shortage stems from the post-COVID downturn. Expecting weak demand, memory producers became conservative with capital expenditures and didn't expand capacity. This left the industry unprepared for the sudden, explosive demand for memory driven by the AI boom.