The necessity of batching stems from a fundamental hardware reality: moving data is far more energy-intensive than computing with it. A single parameter's journey from on-chip SRAM to the multiplier can cost 1000x more energy than the multiplication itself. Batching amortizes this high data movement cost over many computations.

Related Insights

The standard for measuring large compute deals has shifted from number of GPUs to gigawatts of power. This provides a normalized, apples-to-apples comparison across different chip generations and manufacturers, acknowledging that energy is the primary bottleneck for building AI data centers.

Digital computing, the standard for 80 years, is too power-hungry for scalable AI. Unconventional AI's Naveen Rao is betting on analog computing, which uses physics to perform calculations, as a more energy-efficient substrate for the unique demands of intelligent, stochastic workloads.

When power (watts) is the primary constraint for data centers, the total cost of compute becomes secondary. The crucial metric is performance-per-watt. This gives a massive pricing advantage to the most efficient chipmakers, as customers will pay anything for hardware that maximizes output from their limited power budget.

The narrative of energy being a hard cap on AI's growth is largely overstated. AI labs treat energy as a solvable cost problem, not an insurmountable barrier. They willingly pay significant premiums for faster, non-traditional power solutions because these extra costs are negligible compared to the massive expense of GPUs.

The plateauing performance-per-watt of GPUs suggests that simply scaling current matrix multiplication-heavy architectures is unsustainable. This hardware limitation may necessitate research into new computational primitives and neural network designs built for large-scale distributed systems, not single devices.

Contrary to the common focus on chip manufacturing, the immediate bottleneck for building new AI data centers is energy. Factors like power availability, grid interconnects, and high-voltage equipment are the true constraints, forcing companies to explore solutions like on-site power generation.

The intense power demands of AI inference will push data centers to adopt the "heterogeneous compute" model from mobile phones. Instead of a single GPU architecture, data centers will use disaggregated, specialized chips for different tasks to maximize power efficiency, creating a post-GPU era.

While chip production typically scales to meet demand, the energy required to power massive AI data centers is a more fundamental constraint. This bottleneck is creating a strategic push towards nuclear power, with tech giants building data centers near nuclear plants.

Efficiency gains in new chips like NVIDIA's H200 don't lower overall energy use. Instead, developers leverage the added performance to build larger, more complex models. This "ambition creep" negates chip-level savings by increasing training times and data movement, ultimately driving total system power consumption higher.

As hyperscalers build massive new data centers for AI, the critical constraint is shifting from semiconductor supply to energy availability. The core challenge becomes sourcing enough power, raising new geopolitical and environmental questions that will define the next phase of the AI race.