In neoadjuvant settings, ctDNA monitoring allows for real-time therapy adjustment. Data from the iSpy platform shows 80% of hormone-positive patients clear ctDNA with half the chemotherapy, enabling de-escalation, while the remaining 20% can be identified for escalated treatment.
A positive ctDNA test indicating minimal residual disease is strongly linked to recurrence. This expert argues clinicians have an obligation to act on this information, even without definitive guidelines. Framing inaction as unacceptable challenges the passive "wait-and-see" approach.
In neoadjuvant therapy, a patient's long-term outcome is better predicted by stopping tumor DNA shedding (ctDNA clearance) than by achieving pathologic complete response (pCR), the traditional gold standard. This redefines what constitutes a successful treatment response before surgery.
A subset of breast cancers (10-15%) are "non-shedders," meaning they don't release detectable ctDNA. Patients with these tumors have excellent outcomes regardless of chemotherapy, suggesting that surgery alone might be a sufficient and less toxic treatment for this specific group.
In adjuvant bladder cancer trials, ctDNA status is both prognostic and predictive. Patients with positive ctDNA after surgery are at high risk of relapse but benefit from immune checkpoint inhibitors. Conversely, ctDNA-negative patients have a lower risk and derive no benefit, making ctDNA a critical tool to avoid unnecessary, toxic therapy.
AI identified circulating tumor DNA (ctDNA) testing as a highly sensitive method for detecting cancer recurrence earlier than scans or symptoms. Despite skepticism from oncologists who deemed it unproven, the speaker plans to use it for proactive monitoring—a strategy he would not have known about otherwise.
The InVigor11 study was the first to show that detecting recurrence via a ctDNA test before it's visible on scans is not just a prognostic sign, but an actionable clinical state. Intervening with therapy at this early stage was proven to improve patient outcomes, establishing a new paradigm for cancer surveillance.
Contrary to some physicians' concerns, patient survey data shows that over 80% value ctDNA testing. They perceive it not as a source of anxiety, but as a way to be proactive in their care. This finding dismantles a key argument used by some clinicians to resist adoption.
Modern breast cancer treatment has shifted from a 'one-size-fits-all' aggressive approach to a highly individualized one. By de-escalating care—doing smaller surgeries, minimizing radiation, and sometimes omitting chemotherapy or lymph node biopsies—clinicians can achieve better outcomes with fewer long-term complications for patients with favorable disease characteristics.
The main barrier to widespread ctDNA use is not its proven ability to predict who will recur (prognostic value). The challenge is the emerging, but not yet definitive, data on its ability to predict a patient's response to a specific therapy (predictive value).
The interpretation of ctDNA is context-dependent. Unlike in the adjuvant setting, in the neoadjuvant setting, remaining ctDNA positive post-treatment signifies that the current therapy has failed. These high-risk patients need a different therapeutic approach, not an extension of the ineffective one.