Yale spin-out Bexorg uses donated, post-mortem human brains kept molecularly active to test CNS drugs. This novel platform's key advantage is its ability to directly measure pharmacokinetics and blood-brain barrier penetration in a complex human organ, addressing a primary reason for clinical trial failure that animal and cell models cannot adequately predict.

Related Insights

Non-human primate models are poor predictors of human immunogenicity. The industry has shifted to human-relevant ex vivo assays using whole blood or PBMCs. These tests can assess risks like complement activation upfront, enabling proactive protein engineering to improve a drug's safety profile.

The push away from animal models is a technical necessity, not just an ethical one. Advanced therapeutics like T-cell engagers and multispecific antibodies depend on human-specific biological pathways. These mechanisms are not accurately reproduced in animal models, rendering them ineffective for testing these new drug classes.

Recognizing that severe myotonic dystrophy involves CNS impairment, Arthex deliberately invested in a lipid conjugation delivery system for its RNA therapeutic. This strategic choice was made specifically to cross the blood-brain barrier, enabling the treatment of both muscular and neurological symptoms of the disease.

The GSK3 inhibitor was developed for CNS diseases, requiring high specificity and the ability to cross the blood-brain barrier. These same pharmaceutical characteristics—potency and lipophilicity—proved highly advantageous for treating cancer, demonstrating an unexpected but effective therapeutic pivot from neuroscience to oncology.

Only 5% of investigational cancer drugs reach the market due to the gap between lab models and human biology. Dr. Saav Solanki highlights organoids, which use real patient tissue, as a key translational model to improve the predictive accuracy of preclinical research and increase the low success rate.

Actuate’s drug was designed to be highly lipophilic (fat-soluble) to cross the blood-brain barrier for CNS treatment. This same property proved crucial for its success in oncology, as it allows the drug to easily penetrate cancer cell membranes and reach the nucleus.

The NIH will no longer award funding to new grant proposals that rely exclusively on animal models. This policy forces a shift towards New Approach Methodologies (NAMs), such as organoids and organ-on-chips, serving as a major catalyst for innovation and adoption in the preclinical testing space.

Voyager CEO Al Sandrock explains their AAV capsids are engineered to be so potent at crossing the blood-brain barrier that doses can be an order of magnitude lower than standard. Crucially, the capsids are also designed to *avoid* the liver, directly addressing the toxicity issues that have plagued the field.

The company intentionally makes its early research "harder in the short term" by using complex, long-term animal models. This counterintuitive strategy is designed to generate highly predictive data early, thereby reducing the massive financial risk and high failure rate of the later-stage clinical trials.

The FDA is eliminating mandatory animal testing because it's often misleading—90% of drugs passing animal studies fail in humans. The agency is embracing modern alternatives like computational modeling and organ-on-a-chip technology to get faster, more accurate safety data.