As AI's novelty fades, apps face high churn. The solution is personalization through memory and continual learning. This is a difficult systems problem because it requires a paradigm shift from today's stateless inference to a stateful model where weights are updated dynamically based on user interaction.

Related Insights

Pre-reasoning AI models were static assets that depreciated quickly. The advent of reasoning allows models to learn from user interactions, re-establishing the classic internet flywheel: more usage generates data that improves the product, which attracts more users. This creates a powerful, compounding advantage for the leading labs.

The next major evolution in AI will be models that are personalized for specific users or companies and update their knowledge daily from interactions. This contrasts with current monolithic models like ChatGPT, which are static and must store irrelevant information for every user.

The current limitation of LLMs is their stateless nature; they reset with each new chat. The next major advancement will be models that can learn from interactions and accumulate skills over time, evolving from a static tool into a continuously improving digital colleague.

Karpathy identifies a key missing piece for continual learning in AI: an equivalent to sleep. Humans seem to use sleep to distill the day's experiences (their "context window") into the compressed weights of the brain. LLMs lack this distillation phase, forcing them to restart from a fixed state in every new session.

Many AI projects fail to reach production because of reliability issues. The vision for continual learning is to deploy agents that are 'good enough,' then use RL to correct behavior based on real-world errors, much like training a human. This solves the final-mile reliability problem and could unlock a vast market.

Today's LLM memory functions are superficial, recalling basic facts like a user's car model but failing to develop a unique personality. This makes switching between models like ChatGPT and Gemini easy, as there is no deep, personalized connection that creates lock-in. True retention will come from personality, not just facts.

Moving beyond simple commands (prompt engineering) to designing the full instructional input is crucial. This "context engineering" combines system prompts, user history (memory), and external data (RAG) to create deeply personalized and stateful AI experiences.

The key to continual learning is not just a longer context window, but a new architecture with a spectrum of memory types. "Nested learning" proposes a model with different layers that update at different frequencies—from transient working memory to persistent core knowledge—mimicking how humans learn without catastrophic forgetting.

The perceived need for a new "continual learning" architecture is overstated. Current models can already achieve this functionally by building their own tools and apps based on new information. This reframes the challenge from a fundamental research problem to a practical prompt engineering and application design issue.

A key gap between AI and human intelligence is the lack of experiential learning. Unlike a human who improves on a job over time, an LLM is stateless. It doesn't truly learn from interactions; it's the same static model for every user, which is a major barrier to AGI.