Novartis's CEO views AI not as a single breakthrough technology but as an enabler that creates small efficiencies across the entire R&D value chain. The real impact comes from compounding these small gains to shorten drug development timelines by years and improve overall success rates.

Related Insights

An oncology leader views AI's most powerful near-term application as handling tedious logistical and bureaucratic tasks, not discovering novel molecules. By automating paperwork and trial planning, AI can liberate scientists to spend more time on deep, creative thinking that drives breakthroughs.

ProPhet's CEO notes his conviction in AI wasn't a sudden breakthrough. Instead, it was a growing understanding that machine learning's ability to handle noisy, incomplete data at scale directly solves the primary bottlenecks of traditional pharmaceutical research.

Martin Shkreli argues that the primary bottleneck in drug development isn't finding new molecules, but the immense inefficiency caused by poor communication, irrational decision-making, and misaligned incentives across numerous human departments. He believes AI's greatest contribution will be optimizing this complex organizational process rather than just improving discovery.

AI is becoming a personal C-suite tool. Vasant Narasimhan uses an AI agent trained on Novartis's historical R&D decisions. This allows him to query past contexts and biases when facing a new decision, leading to more informed, data-driven leadership rather than relying solely on memory.

Many pharma companies have breakthrough AI results in isolated functions, or "pockets of excellence." However, the ultimate competitive advantage will go to the company that first connects these disparate successes into a single, integrated, enterprise-wide AI capability, thereby creating compounded value across the organization.

The future of AI in drug discovery is shifting from merely speeding up existing processes to inventing novel therapeutics from scratch. The paradigm will move toward AI-designed drugs validated with minimal wet lab reliance, changing the key question from "How fast can AI help?" to "What can AI create?"

AI's primary value in early-stage drug discovery is not eliminating experimental validation, but drastically compressing the ideation-to-testing cycle. It reduces the in-silico (computer-based) validation of ideas from a multi-month process to a matter of days, massively accelerating the pace of research.

While AI-driven drug discovery is the ultimate goal, Titus argues its most practical value is in improving business efficiency. This includes automating tasks like literature reviews, paper drafting, and procurement, freeing up scientists' time for high-value work like experimental design and interpretation.

Despite major scientific advances, the key metrics of drug R&D—a ~13-year timeline, 90-95% clinical failure rate, and billion-dollar costs—have remained unchanged for two decades. This profound lack of productivity improvement creates the urgent need for a systematic, AI-driven overhaul.

Titus believes a key area for AI's impact is in bringing a "design for manufacturing" approach to therapeutics. Currently, manufacturability is an afterthought. Integrating it early into the discovery process, using AI to predict toxicity and scalability, can prevent costly rework.