Exonic is building a platform for bioengineers to compete on open-source biological modeling, aiming to turn drug discovery into a meritocratic competition. This mirrors the model of crowdsourced hedge fund Numerai, applying a "wisdom of the crowd" approach to disrupt the closed, expensive R&D processes of large pharmaceutical companies.
The power of AI for Novonesis isn't the algorithm itself, but its application to a massive, well-structured proprietary dataset. Their organized library of 100,000 strains allows AI to rapidly predict protein shapes and accelerate R&D in ways competitors cannot match.
The next leap in biotech moves beyond applying AI to existing data. CZI pioneers a model where 'frontier biology' and 'frontier AI' are developed in tandem. Experiments are now designed specifically to generate novel data that will ground and improve future AI models, creating a virtuous feedback loop.
Despite the hype, YC's focus isn't just on pure AI startups. The accelerator is backing a diverse portfolio of companies in healthcare, finance, and deep tech, using AI as a disruptive tool to rewrite the rules of these traditional, 'dusty' industries, much like the internet did.
A significant portion of biotech's high costs stems from its "artisanal" nature, where each company develops bespoke digital workflows and data structures. This inefficiency arises because startups are often structured for acquisition after a single clinical success, not for long-term, scalable operations.
CZI's Biohub model hinges on a simple principle: physically seating biologists and engineers from different institutions (Stanford, UCSF, Berkeley) together. This direct proximity fosters collaboration and creates hybrid experts, overcoming the institutional silos often reinforced by traditional grant-based funding.
The future of valuable AI lies not in models trained on the abundant public internet, but in those built on scarce, proprietary data. For fields like robotics and biology, this data doesn't exist to be scraped; it must be actively created, making the data generation process itself the key competitive moat.
The key to successful open-source AI isn't uniting everyone into a massive project. Instead, EleutherAI's model proves more effective: creating small, siloed teams with guaranteed compute and end-to-end funding for a single, specific research problem. This avoids organizational overhead and ensures completion.
A massive disconnect exists where scientific breakthroughs are accelerating, yet the biotech market is in a downturn, with many companies trading below cash. This paradox highlights structural and economic failures within the industry, rather than a lack of scientific progress. The core question is why the business is collapsing while the technology is exploding.
The future of biotech moves beyond single drugs. It lies in integrated systems where the 'platform is the product.' This model combines diagnostics, AI, and manufacturing to deliver personalized therapies like cancer vaccines. It breaks the traditional drug development paradigm by creating a generative, pan-indication capability rather than a single molecule.
The next decade in biotech will prioritize speed and cost, areas where Chinese companies excel. They rapidly and cheaply advance molecules to early clinical trials, attracting major pharma companies to acquire assets that they historically would have sourced from US biotechs. This is reshaping the global competitive landscape.