The world's top AI researchers at labs like OpenAI, Google, and Anthropic have not solved adversarial robustness. It is therefore highly unlikely that third-party B2B security vendors, who typically lack the same level of deep research capability, possess a genuine solution.
AI-powered browsers are vulnerable to a new class of attack called indirect prompt injection. Malicious instructions hidden within webpage content can be unknowingly executed by the browser's LLM, which treats them as legitimate user commands. This represents a systemic security flaw that could allow websites to manipulate user actions without their consent.
Defenders of AI models are "fighting against infinity" because as model capabilities and complexity grow, the potential attack surface area expands faster than it can be secured. This gives attackers a persistent upper hand in the cat-and-mouse game of AI security.
Claiming a "99% success rate" for an AI guardrail is misleading. The number of potential attacks (i.e., prompts) is nearly infinite. For GPT-5, it's 'one followed by a million zeros.' Blocking 99% of a tested subset still leaves a virtually infinite number of effective attacks undiscovered.
Contrary to the popular belief that generative AI is easily jailbroken, modern models now use multi-step reasoning chains. They unpack prompts, hydrate them with context before generation, and run checks after generation. This makes it significantly harder for users to accidentally or intentionally create harmful or brand-violating content.
This syntactic bias creates a new attack vector where malicious prompts can be cloaked in a grammatical structure the LLM associates with a safe domain. This 'syntactic masking' tricks the model into overriding its semantic-based safety policies and generating prohibited content, posing a significant security risk.
Many AI safety guardrails function like the TSA at an airport: they create the appearance of security for enterprise clients and PR but don't stop determined attackers. Seasoned adversaries can easily switch to a different model, rendering the guardrails a "futile battle" that has little to do with real-world safety.
Poland's AI lab discovered that safety and security measures implemented in models primarily trained and secured for English are much easier to circumvent using Polish prompts. This highlights a critical vulnerability in global AI models and necessitates local, language-specific safety training and red-teaming to create robust safeguards.
Unlike traditional software where a bug can be patched with high certainty, fixing a vulnerability in an AI system is unreliable. The underlying problem often persists because the AI's neural network—its 'brain'—remains susceptible to being tricked in novel ways.
Most AI "defense in depth" systems fail because their layers are correlated, often using the same base model. A successful approach requires creating genuinely independent defensive components. Even if each layer is individually weak, their independence makes it combinatorially harder for an attacker to bypass them all.
Jailbreaking is a direct attack where a user tricks a base AI model. Prompt injection is more nuanced; it's an attack on an AI-powered *application*, where a malicious user gets the AI to ignore the developer's original system prompt and follow new, harmful instructions instead.