Claiming a "99% success rate" for an AI guardrail is misleading. The number of potential attacks (i.e., prompts) is nearly infinite. For GPT-5, it's 'one followed by a million zeros.' Blocking 99% of a tested subset still leaves a virtually infinite number of effective attacks undiscovered.
The rapid evolution of AI makes reactive security obsolete. The new approach involves testing models in high-fidelity simulated environments to observe emergent behaviors from the outside. This allows mapping attack surfaces even without fully understanding the model's internal mechanics.
Defenders of AI models are "fighting against infinity" because as model capabilities and complexity grow, the potential attack surface area expands faster than it can be secured. This gives attackers a persistent upper hand in the cat-and-mouse game of AI security.
This syntactic bias creates a new attack vector where malicious prompts can be cloaked in a grammatical structure the LLM associates with a safe domain. This 'syntactic masking' tricks the model into overriding its semantic-based safety policies and generating prohibited content, posing a significant security risk.
Many AI safety guardrails function like the TSA at an airport: they create the appearance of security for enterprise clients and PR but don't stop determined attackers. Seasoned adversaries can easily switch to a different model, rendering the guardrails a "futile battle" that has little to do with real-world safety.
Instead of relying on flawed AI guardrails, focus on traditional security practices. This includes strict permissioning (ensuring an AI agent can't do more than necessary) and containerizing processes (like running AI-generated code in a sandbox) to limit potential damage from a compromised AI.
Unlike traditional software "jailbreaking," which requires technical skill, bypassing chatbot safety guardrails is a conversational process. The AI models are designed such that over a long conversation, the history of the chat is prioritized over its built-in safety rules, causing the guardrails to "degrade."
Poland's AI lab discovered that safety and security measures implemented in models primarily trained and secured for English are much easier to circumvent using Polish prompts. This highlights a critical vulnerability in global AI models and necessitates local, language-specific safety training and red-teaming to create robust safeguards.
Unlike traditional software where a bug can be patched with high certainty, fixing a vulnerability in an AI system is unreliable. The underlying problem often persists because the AI's neural network—its 'brain'—remains susceptible to being tricked in novel ways.
Most AI "defense in depth" systems fail because their layers are correlated, often using the same base model. A successful approach requires creating genuinely independent defensive components. Even if each layer is individually weak, their independence makes it combinatorially harder for an attacker to bypass them all.
The world's top AI researchers at labs like OpenAI, Google, and Anthropic have not solved adversarial robustness. It is therefore highly unlikely that third-party B2B security vendors, who typically lack the same level of deep research capability, possess a genuine solution.