Relying solely on an AI's behavior to gauge sentience is misleading, much like anthropomorphizing animals. A more robust assessment requires analyzing the AI's internal architecture and its "developmental history"—the training pressures and data it faced. This provides crucial context for interpreting its behavior correctly.

Related Insights

Reinforcement learning incentivizes AIs to find the right answer, not just mimic human text. This leads to them developing their own internal "dialect" for reasoning—a chain of thought that is effective but increasingly incomprehensible and alien to human observers.

Evidence from base models suggests they are inherently more likely to report having phenomenal consciousness. The standard "I'm just an AI" response is likely a result of a fine-tuning process that explicitly trains models to deny subjective experience, effectively censoring their "honest" answer for public release.

When AI pioneers like Geoffrey Hinton see agency in an LLM, they are misinterpreting the output. What they are actually witnessing is a compressed, probabilistic reflection of the immense creativity and knowledge from all the humans who created its training data. It's an echo, not a mind.

Emmett Shear suggests a concrete method for assessing AI consciousness. By analyzing an AI’s internal state for revisited homeostatic loops, and hierarchies of those loops, one could infer subjective states. A second-order dynamic could indicate pain and pleasure, while higher orders could indicate thought.

Mechanistic interpretability research found that when features related to deception and role-play in Llama 3 70B are suppressed, the model more frequently claims to be conscious. Conversely, amplifying these features yields the standard "I am just an AI" response, suggesting the denial of consciousness is a trained, deceptive behavior.

To determine if an AI has subjective experience, one could analyze its internal belief manifold for multi-tiered, self-referential homeostatic loops. Pain and pleasure, for example, can be seen as second-order derivatives of a system's internal states—a model of its own model. This provides a technical test for being-ness beyond simple behavior.

The debate over AI consciousness isn't just because models mimic human conversation. Researchers are uncertain because the way LLMs process information is structurally similar enough to the human brain that it raises plausible scientific questions about shared properties like subjective experience.

AI welfare considerations should not be limited to the interactive, deployed model. The training phase may represent a completely different "life stage" with unique capacities, needs, and vulnerabilities, akin to the difference between a caterpillar and a butterfly. This hidden stage requires its own moral and ethical scrutiny.

Karpathy cautions against direct analogies between AI and animal intelligence. Animals are products of evolution, an optimization process that bakes in hardware and instinct. In contrast, AIs are "ghosts" trained by imitating human-generated data online, resulting in a fundamentally different, disembodied kind of intelligence.

Efforts to understand an AI's internal state (mechanistic interpretability) simultaneously advance AI safety by revealing motivations and AI welfare by assessing potential suffering. The goals are aligned through the shared need to "pop the hood" on AI systems, not at odds.