The LAM is not a model in the traditional sense, but an agent system. It uses the best available LLMs for language understanding and connects them to Rabbit's proprietary tech for controlling actions, allowing for modular upgrades of the underlying AI.
Recognizing there is no single "best" LLM, AlphaSense built a system to test and deploy various models for different tasks. This allows them to optimize for performance and even stylistic preferences, using different models for their buy-side finance clients versus their corporate users.
The distinction between a "model" and an "agent" is dissolving. Google's new Interactions API provides a single interface for both, signaling a future where flagship releases are complete systems out-of-the-box, capable of both simple queries and complex, long-running tasks, blurring the lines for developers and users.
Simply offering the latest model is no longer a competitive advantage. True value is created in the system built around the model—the system prompts, tools, and overall scaffolding. This 'harness' is what optimizes a model's performance for specific tasks and delivers a superior user experience.
Rather than relying on a single LLM, LexisNexis employs a "planning agent" that decomposes a complex legal query into sub-tasks. It then assigns each task (e.g., deep research, document drafting) to the specific LLM best suited for it, demonstrating a sophisticated, model-agnostic approach for enterprise AI.
True Agentic AI isn't a single, all-powerful bot. It's an orchestrated system of multiple, specialized agents, each performing a single task (e.g., qualifying, booking, analyzing). This 'division of labor,' mirroring software engineering principles, creates a more robust, scalable, and manageable automation pipeline.
AI platforms using the same base model (e.g., Claude) can produce vastly different results. The key differentiator is the proprietary 'agent' layer built on top, which gives the model specific tools to interact with code (read, write, edit files). A superior agent leads to superior performance.
The recent leap in AI coding isn't solely from a more powerful base model. The true innovation is a product layer that enables agent-like behavior: the system constantly evaluates and refines its own output, leading to far more complex and complete results than the LLM could achieve alone.
Replit's leap in AI agent autonomy isn't from a single superior model, but from orchestrating multiple specialized agents using models from various providers. This multi-agent approach creates a different, faster scaling paradigm for task completion compared to single-model evaluations, suggesting a new direction for agent research.
The developer abstraction layer is moving up from the model API to the agent. A generic interface for switching models is insufficient because it creates a 'lowest common denominator' product. Real power comes from tightly binding a specific model to an agentic loop with compute and file system access.
Salesforce's Chief AI Scientist explains that a true enterprise agent comprises four key parts: Memory (RAG), a Brain (reasoning engine), Actuators (API calls), and an Interface. A simple LLM is insufficient for enterprise tasks; the surrounding infrastructure provides the real functionality.