Biotech companies create more value by focusing on de-risking molecules for clinical success, not engineering them from scratch. Specialized platforms can create molecules faster and more reliably, allowing developers to focus their core competency on advancing de-risked assets through the pipeline.

Related Insights

AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.

Contrary to the popular belief that antibody development is a bespoke craft, modern methods enable a reproducible, systematic engineering process. This allows for predictable creation of antibodies with specific properties, such as matching affinity for human and animal targets, a feat once considered a "flight of fancy."

Tackling monumental challenges, like creating a biologic effective against 800+ HIV variants, is not a single-shot success. It requires multiple iterations on an advanced engineering platform. Each cycle of design, measurement, and learning progressively refines the molecule, making previously impossible therapeutic goals achievable.

Synthakyne operates as a specialized 'cytokine engineering shop.' It develops its own assets in high-value areas like oncology (IL-2, IL-12) while simultaneously licensing its platform for other indications, such as inflammation, through major partnerships with Merck and Sanofi. This strategy generates capital and validates the core technology.

Responding to Wall Street pressure to de-risk, large pharmaceutical firms cut internal early-stage research. This led to an exodus of talent and the rise of contract research organizations (CROs), creating an infrastructure that, like cloud computing for tech, lowered the barrier for new biotech startups.

Many innovative drug designs fail because they are difficult to manufacture. LabGenius's ML platform avoids this by simultaneously optimizing for both biological function (e.g., potency) and "developability." This allows them to explore unconventional molecular designs without hitting a production wall later.

The future of biotech moves beyond single drugs. It lies in integrated systems where the 'platform is the product.' This model combines diagnostics, AI, and manufacturing to deliver personalized therapies like cancer vaccines. It breaks the traditional drug development paradigm by creating a generative, pan-indication capability rather than a single molecule.

Ipsen avoids the high-risk, capital-intensive phase of basic research. Instead, its R&D strategy focuses on licensing promising drug candidates from universities and biotechs. The company then leverages its expertise in later-stage development, including toxicology, manufacturing scale-up (CMC), and clinical trials, to bring these de-risked assets to market.

Titus believes a key area for AI's impact is in bringing a "design for manufacturing" approach to therapeutics. Currently, manufacturability is an afterthought. Integrating it early into the discovery process, using AI to predict toxicity and scalability, can prevent costly rework.

Beam's platform strategy extends beyond diseases with one common mutation. They believe that as regulators accept the base editing platform's consistency, they can efficiently create customized therapies for diseases with numerous rare mutations. This shifts the model from one drug for many patients to a platform that rapidly generates many unique drugs.

Therapeutic Developers Should Outsource Molecule Engineering to Focus on De-Risking | RiffOn