The push toward physical AI and spatial intelligence is primarily a strategy to overcome data scarcity for training general models. By creating simulated 3D environments, researchers can generate the novel, complex data that is currently unavailable but crucial for advancing AI into the real world.

Related Insights

While LLMs dominate headlines, Dr. Fei-Fei Li argues that "spatial intelligence"—the ability to understand and interact with the 3D world—is the critical, underappreciated next step for AI. This capability is the linchpin for unlocking meaningful advances in robotics, design, and manufacturing.

Language is just one 'keyhole' into intelligence. True artificial general intelligence (AGI) requires 'world modeling'—a spatial intelligence that understands geometry, physics, and actions. This capability to represent and interact with the state of the world is the next critical phase of AI development beyond current language models.

Startups and major labs are focusing on "world models," which simulate physical reality, cause, and effect. This is seen as the necessary step beyond text-based LLMs to create agents that can truly understand and interact with the physical world, a key step towards AGI.

Large language models are insufficient for tasks requiring real-world interaction and spatial understanding, like robotics or disaster response. World models provide this missing piece by generating interactive, reason-able 3D environments. They represent a foundational shift from language-based AI to a more holistic, spatially intelligent AI.

The future of valuable AI lies not in models trained on the abundant public internet, but in those built on scarce, proprietary data. For fields like robotics and biology, this data doesn't exist to be scraped; it must be actively created, making the data generation process itself the key competitive moat.

Ken Goldberg quantifies the challenge: the text data used to train LLMs would take a human 100,000 years to read. Equivalent data for robot manipulation (vision-to-control signals) doesn't exist online and must be generated from scratch, explaining the slower progress in physical AI.

World Labs co-founder Fei-Fei Li posits that spatial intelligence—the ability to reason and interact in 3D space—is a distinct and complementary form of intelligence to language. This capability is essential for tasks like robotic manipulation and scientific discovery that cannot be reduced to linguistic descriptions.

Current multimodal models shoehorn visual data into a 1D text-based sequence. True spatial intelligence is different. It requires a native 3D/4D representation to understand a world governed by physics, not just human-generated language. This is a foundational architectural shift, not an extension of LLMs.

AR and robotics are bottlenecked by software's inability to truly understand the 3D world. Spatial intelligence is positioned as the fundamental operating system that connects a device's digital "brain" to physical reality. This layer is crucial for enabling meaningful interaction and maturing the hardware platforms.

Human intelligence is multifaceted. While LLMs excel at linguistic intelligence, they lack spatial intelligence—the ability to understand, reason, and interact within a 3D world. This capability, crucial for tasks from robotics to scientific discovery, is the focus for the next wave of AI models.

Spatial AI's Primary Goal Is Unlocking New Data, Not Just Powering Robots | RiffOn