AI and formal methods have been separate fields with opposing traits: AI is flexible but untrustworthy, while formal methods offer guarantees but are rigid. The next frontier is combining them into neurosymbolic systems, creating a "peanut butter and chocolate" moment that captures the best of both worlds.

Related Insights

Generative AI can produce the "miraculous" insights needed for formal proofs, like finding an inductive invariant, which traditionally required a PhD. It achieves this by training on vast libraries of existing mathematical proofs and generalizing their underlying patterns, effectively automating the creative leap needed for verification.

A core debate in AI is whether LLMs, which are text prediction engines, can achieve true intelligence. Critics argue they cannot because they lack a model of the real world. This prevents them from making meaningful, context-aware predictions about future events—a limitation that more data alone may not solve.

Language is just one 'keyhole' into intelligence. True artificial general intelligence (AGI) requires 'world modeling'—a spatial intelligence that understands geometry, physics, and actions. This capability to represent and interact with the state of the world is the next critical phase of AI development beyond current language models.

Startups and major labs are focusing on "world models," which simulate physical reality, cause, and effect. This is seen as the necessary step beyond text-based LLMs to create agents that can truly understand and interact with the physical world, a key step towards AGI.

As AI models are used for critical decisions in finance and law, black-box empirical testing will become insufficient. Mechanistic interpretability, which analyzes model weights to understand reasoning, is a bet that society and regulators will require explainable AI, making it a crucial future technology.

Arvind Krishna firmly believes that today's LLM technology path is insufficient for reaching Artificial General Intelligence (AGI). He gives it extremely low odds, stating that a breakthrough will require fusing current models with structured, hard knowledge, a field known as neurosymbolic AI, before AGI becomes plausible.

Instead of replacing entire systems with AI "world models," a superior approach is a hybrid model. Classical code should handle deterministic logic (like game physics), while AI provides a "differentiable" emergent layer for aesthetics and creativity (like real-time texturing). This leverages the unique strengths of both computational paradigms.

LLMs initially operate like philosophical nominalists (truth from language patterns), a model that proved more effective than early essentialist AI attempts. Now, we are trying to ground them in reality, effectively adding essentialist characteristics—a Hegelian synthesis of opposing ideas.

Current LLMs fail at science because they lack the ability to iterate. True scientific inquiry is a loop: form a hypothesis, conduct an experiment, analyze the result (even if incorrect), and refine. AI needs this same iterative capability with the real world to make genuine discoveries.

The next leap in AI will come from integrating general-purpose reasoning models with specialized models for domains like biology or robotics. This fusion, creating a "single unified intelligence" across modalities, is the base case for achieving superintelligence.

The Future of AI is Neurosymbolic, Fusing LLM Flexibility with Formal Method Guarantees | RiffOn