OpenAI favors "zero gradient" prompt optimization because serving thousands of unique, fine-tuned model snapshots is operationally very difficult. Prompt-based adjustments allow performance gains without the immense infrastructure burden, making it a more practical and scalable approach for both OpenAI and developers.

Related Insights

With models like Gemini 3, the key skill is shifting from crafting hyper-specific, constrained prompts to making ambitious, multi-faceted requests. Users trained on older models tend to pare down their asks, but the latest AIs are 'pent up with creative capability' and yield better results from bigger challenges.

Simply offering the latest model is no longer a competitive advantage. True value is created in the system built around the model—the system prompts, tools, and overall scaffolding. This 'harness' is what optimizes a model's performance for specific tasks and delivers a superior user experience.

The perception of LORAs as a lesser fine-tuning method is a marketing problem. Technically, for task-specific customization, they provide massive operational upside at inference time by allowing multiplexing on a single GPU and enabling per-token pricing models, a benefit often overlooked.

Instead of manually refining a complex prompt, create a process where an AI agent evaluates its own output. By providing a framework for self-critique, including quantitative scores and qualitative reasoning, the AI can iteratively enhance its own system instructions and achieve a much stronger result.

The early focus on crafting the perfect prompt is obsolete. Sophisticated AI interaction is now about 'context engineering': architecting the entire environment by providing models with the right tools, data, and retrieval mechanisms to guide their reasoning process effectively.

Initially, even OpenAI believed a single, ultimate 'model to rule them all' would emerge. This thinking has completely changed to favor a proliferation of specialized models, creating a healthier, less winner-take-all ecosystem where different models serve different needs.

While prompt optimization is theoretically appealing, OpenPipe's team evaluated methods like JEPA and found they provided only minor boosts. Their RL fine-tuning methods delivered vastly superior results (96% vs 56% on a benchmark), suggesting weight updates still trump prompt engineering for complex tasks.

AI development has evolved to where models can be directed using human-like language. Instead of complex prompt engineering or fine-tuning, developers can provide instructions, documentation, and context in plain English to guide the AI's behavior, democratizing access to sophisticated outcomes.

Fine-tuning an AI model is most effective when you use high-signal data. The best source for this is the set of difficult examples where your system consistently fails. The processes of error analysis and evaluation naturally curate this valuable dataset, making fine-tuning a logical and powerful next step after prompt engineering.

Good Star Labs found GPT-5's performance in their Diplomacy game skyrocketed with optimized prompts, moving it from the bottom to the top. This shows a model's inherent capability can be masked or revealed by its prompt, making "best model" a context-dependent title rather than an absolute one.