Martin Shkreli makes a case for photonic computing—using light instead of electrons—as the next major paradigm in AI hardware. He argues that because matrix multiplications (95% of a GPU's job) are a natural function of light interference, photonic chips could offer an "insane speedup" with O-of-one complexity, making them a potential successor to GPUs.

Related Insights

The AI inference process involves two distinct phases: "prefill" (reading the prompt, which is compute-bound) and "decode" (writing the response, which is memory-bound). NVIDIA GPUs excel at prefill, while companies like Grok optimize for decode. The Grok-NVIDIA deal signals a future of specialized, complementary hardware rather than one-size-fits-all chips.

The performance gains from Nvidia's Hopper to Blackwell GPUs come from increased size and power, not efficiency. This signals a potential scaling limit, creating an opportunity for radically new hardware primitives and neural network architectures beyond today's matrix-multiplication-centric models.

While purpose-built chips (ASICs) like Google's TPU are efficient, the AI industry is still in an early, experimental phase. GPUs offer the programmability and flexibility needed to develop new algorithms, as ASICs risk being hard-coded for models that quickly become obsolete.

To achieve 1000x efficiency, Unconventional AI is abandoning the digital abstraction (bits representing numbers) that has defined computing for 80 years. Instead, they are co-designing hardware and algorithms where the physics of the substrate itself defines the neural network, much like a biological brain.

As GPU data transfer speeds escalate, traditional electricity-based communication between nearby chips faces physical limitations. The industry is shifting to optics (light) for this "scale-up" networking. Nvidia is likely to acquire a company like IR Labs to secure this photonic interconnect technology, crucial for future chip architectures.

Digital computing, the standard for 80 years, is too power-hungry for scalable AI. Unconventional AI's Naveen Rao is betting on analog computing, which uses physics to perform calculations, as a more energy-efficient substrate for the unique demands of intelligent, stochastic workloads.

The plateauing performance-per-watt of GPUs suggests that simply scaling current matrix multiplication-heavy architectures is unsustainable. This hardware limitation may necessitate research into new computational primitives and neural network designs built for large-scale distributed systems, not single devices.

The intense power demands of AI inference will push data centers to adopt the "heterogeneous compute" model from mobile phones. Instead of a single GPU architecture, data centers will use disaggregated, specialized chips for different tasks to maximize power efficiency, creating a post-GPU era.

GPUs were designed for graphics, not AI. It was a "twist of fate" that their massively parallel architecture suited AI workloads. Chips designed from scratch for AI would be much more efficient, opening the door for new startups to build better, more specialized hardware and challenge incumbents.

Today's transformers are optimized for matrix multiplication (MatMul) on GPUs. However, as compute scales to distributed clusters, MatMul may not be the most efficient primitive. Future AI architectures could be drastically different, built on new primitives better suited for large-scale, distributed hardware.