Early Wittgenstein's "logical space of possibilities" mirrors how LLM embeddings map words into a high-dimensional space. Late Wittgenstein's "language games" explain their core function: next-token prediction and learning through interactive feedback (RLHF), where meaning is derived from use and context.

Related Insights

A core debate in AI is whether LLMs, which are text prediction engines, can achieve true intelligence. Critics argue they cannot because they lack a model of the real world. This prevents them from making meaningful, context-aware predictions about future events—a limitation that more data alone may not solve.

Reinforcement learning incentivizes AIs to find the right answer, not just mimic human text. This leads to them developing their own internal "dialect" for reasoning—a chain of thought that is effective but increasingly incomprehensible and alien to human observers.

MIT research reveals that large language models develop "spurious correlations" by associating sentence patterns with topics. This cognitive shortcut causes them to give domain-appropriate answers to nonsensical queries if the grammatical structure is familiar, bypassing logical analysis of the actual words.

The current limitation of LLMs is their stateless nature; they reset with each new chat. The next major advancement will be models that can learn from interactions and accumulate skills over time, evolving from a static tool into a continuously improving digital colleague.

Wittgenstein grounded language games in a shared biological reality. LLMs raise a fascinating question: are they part of our "form of life"? They are trained on human data, but they are not biological and learn differently, which may mean their "truth functions" are fundamentally alien to ours.

Anthropic suggests that LLMs, trained on text about AI, respond to field-specific terms. Using phrases like 'Think step by step' or 'Critique your own response' acts as a cheat code, activating more sophisticated, accurate, and self-correcting operational modes in the model.

It's unsettling to trust an AI that's just predicting the next word. The best approach is to accept this as a functional paradox, similar to how we trust gravity without fully understanding its origins. Maintain healthy skepticism about outputs, but embrace the technology's emergent capabilities to use it as an effective thought partner.

LLMs initially operate like philosophical nominalists (truth from language patterns), a model that proved more effective than early essentialist AI attempts. Now, we are trying to ground them in reality, effectively adding essentialist characteristics—a Hegelian synthesis of opposing ideas.

The 2017 introduction of "transformers" revolutionized AI. Instead of being trained on the specific meaning of each word, models began learning the contextual relationships between words. This allowed AI to predict the next word in a sequence without needing a formal dictionary, leading to more generalist capabilities.

To improve LLM reasoning, researchers feed them data that inherently contains structured logic. Training on computer code was an early breakthrough, as it teaches patterns of reasoning far beyond coding itself. Textbooks are another key source for building smaller, effective models.