The transition to an engineering discipline in drug discovery, analogous to aeronautics, means using powerful in silico models to get much closer to a final product before physical testing. This reduces reliance on iterative, expensive, and time-consuming wet lab experiments.
AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.
Wet lab experiments are slow and expensive, forcing scientists to pursue safer, incremental hypotheses. AI models can computationally test riskier, 'home run' ideas before committing lab resources. This de-risking makes scientists less hesitant to explore breakthrough concepts that could accelerate the field.
Unlike traditional methods that simulate physical interactions like a key in a lock, ProPhet's AI learns the fundamental patterns governing why certain molecules and proteins interact. This allows for prediction without needing slow, expensive, and often impossible physical or computational simulations.
Contrary to the popular belief that antibody development is a bespoke craft, modern methods enable a reproducible, systematic engineering process. This allows for predictable creation of antibodies with specific properties, such as matching affinity for human and animal targets, a feat once considered a "flight of fancy."
Eroom's Law (Moore's Law reversed) shows rising R&D costs without better success rates. A key culprit may be the obsession with mechanistic understanding. AI 'black box' models, which prioritize predictive results over explainability, could break this expensive bottleneck and accelerate the discovery of effective treatments.
While AI promises to design therapeutics computationally, it doesn't eliminate the need for physical lab work. Even if future models require no training data, their predicted outputs must be experimentally validated. This ensures a continuous, inescapable cycle where high-throughput data generation remains critical for progress.
The future of AI in drug discovery is shifting from merely speeding up existing processes to inventing novel therapeutics from scratch. The paradigm will move toward AI-designed drugs validated with minimal wet lab reliance, changing the key question from "How fast can AI help?" to "What can AI create?"
AI's primary value in early-stage drug discovery is not eliminating experimental validation, but drastically compressing the ideation-to-testing cycle. It reduces the in-silico (computer-based) validation of ideas from a multi-month process to a matter of days, massively accelerating the pace of research.
The immediate goal for AI in drug design is finding initial "hits" for difficult targets. The true endgame, however, is to train models on manufacturability data—like solubility and stability—so they can generate molecules that are already optimized, drastically compressing the development timeline.
Titus believes a key area for AI's impact is in bringing a "design for manufacturing" approach to therapeutics. Currently, manufacturability is an afterthought. Integrating it early into the discovery process, using AI to predict toxicity and scalability, can prevent costly rework.