The advent of highly sensitive PSMA PET imaging identifies metastases in many patients previously considered to have only biochemical relapse (BCR). However, experts argue against a knee-jerk reaction to treat. Many of these patients, particularly those with slow PSA doubling times, can be safely observed, challenging the assumption that visible disease always requires immediate intervention.

Related Insights

Standard guidelines for treating metastatic prostate cancer are based on conventional imaging (CT/bone scan). The panel argues that PSMA PET-positive biochemical recurrence represents a different, earlier disease state. This necessitates new treatment paradigms, like definitive therapy durations, not covered by current guidelines.

The effectiveness of radioligand therapy is counterintuitive: as tumors shrink and PSMA binding sites decrease, less radiation is delivered to the cancer. The VISION trial showed the first two doses delivered more radiation to the tumor than the subsequent four, questioning the value of a fixed, prolonged treatment schedule.

Unlike traditional chemotherapy, radioligand therapy's toxicity may be inversely correlated with tumor volume. In low-burden disease, fewer cancer cells act as a 'sink' for the drug, potentially leading to higher radiation exposure and side effects in healthy, PSMA-expressing tissues like salivary glands.

After years of successfully intensifying hormonal therapy, the focus in prostate cancer is shifting toward de-intensification. Researchers are exploring intermittent therapy for top responders and developing non-hormonal approaches like radioligands to spare patients the chronic, life-altering side effects of permanent castration.

For patients with oligometastatic disease who achieve a deep PSA response (e.g., to zero), oncologists consider finite treatment durations (e.g., 18-24 months) followed by observation. This "do less harm" approach challenges the standard of continuous therapy until progression, aiming for long-term treatment-free intervals.

An NCI working group coined "PSMA positive BCR" to classify patients with biochemical relapse (BCR) who have findings on a modern PSMA PET scan. This formally recognizes this group is distinct from both conventionally-defined metastatic patients and traditional BCR patients, necessitating unique clinical trial designs and treatment strategies.

Data from the CAPItello trial showed a significant number of patients with PTEN deficiency experienced radiological progression without a corresponding PSA increase. This challenges the standard reliance on PSA for monitoring in high-risk prostate cancer and suggests a need for more frequent, personalized imaging protocols to detect progression earlier.

Experts believe molecular tests like Decipher and PTEN status are superior to simply counting bone lesions for guiding treatment. While not yet standard practice for all decisions, this represents a significant shift towards using underlying tumor biology to determine therapy, like adding docetaxel.

The EMBARK trial demonstrated an overall survival (OS) benefit, yet experts argue this doesn't automatically make treatment mandatory. For asymptomatic patients with a long life expectancy, factors like treatment-free survival and quality of life are critical considerations, challenging the primacy of OS as the sole decision-driver in this population.

Regularly scheduled FET PET scans over extended periods help clinicians confidently monitor fluctuating lesions. This longitudinal data provides the reassurance needed to be patient and avoid prematurely escalating treatment for what may ultimately prove to be benign, treatment-related changes.