A practical hack to improve AI agent reliability is to avoid built-in tool-calling functions. LLMs have more training data on writing code than on specific tool-use APIs. Prompting the agent to write and execute the code that calls a tool leverages its core strength and produces better outcomes.

Related Insights

Fully autonomous agents are not yet reliable for complex production use cases because accuracy collapses when chaining multiple probabilistic steps. Zapier's CEO recommends a hybrid "agentic workflow" approach: embed a single, decisive agent within an otherwise deterministic, structured workflow to ensure reliability while still leveraging LLM intelligence.

LLMs shine when acting as a 'knowledge extruder'—shaping well-documented, 'in-distribution' concepts into specific code. They fail when the core task is novel problem-solving where deep thinking, not code generation, is the bottleneck. In these cases, the code is the easy part.

An LLM shouldn't do math internally any more than a human would. The most intelligent AI systems will be those that know when to call specialized, reliable tools—like a Python interpreter or a search API—instead of attempting to internalize every capability from first principles.

High productivity isn't about using AI for everything. It's a disciplined workflow: breaking a task into sub-problems, using an LLM for high-leverage parts like scaffolding and tests, and reserving human focus for the core implementation. This avoids the sunk cost of forcing AI on unsuitable tasks.

AI platforms using the same base model (e.g., Claude) can produce vastly different results. The key differentiator is the proprietary 'agent' layer built on top, which gives the model specific tools to interact with code (read, write, edit files). A superior agent leads to superior performance.

Instead of asking an AI to directly build something, the more effective approach is to instruct it on *how* to solve the problem: gather references, identify best-in-class libraries, and create a framework before implementation. This means working one level of abstraction higher than the code itself.

Achieve higher-quality results by using an AI to first generate an outline or plan. Then, refine that plan with follow-up prompts before asking for the final execution. This course-corrects early and avoids wasted time on flawed one-shot outputs, ultimately saving time.

To maximize an AI agent's effectiveness, establish foundational software engineering practices like typed languages, linters, and tests. These tools provide the necessary context and feedback loops for the AI to identify, understand, and correct its own mistakes, making it more resilient.

Instead of giving an LLM hundreds of specific tools, a more scalable "cyborg" approach is to provide one tool: a sandboxed code execution environment. The LLM writes code against a company's SDK, which is more context-efficient, faster, and more flexible than multiple API round-trips.

For complex, one-time tasks like a code migration, don't just ask AI to write a script. Instead, have it build a disposable tool—a "jig" or "command center”—that visualizes the process and guides you through each step. This provides more control and understanding than a black-box script.