The T-cell delivery system is versatile. It can carry T-cell engagers for cancer, but also antibodies for Alzheimer's or oligonucleotides. By using different T-cell types (like regulatory T-cells), it can also be used to reduce inflammation, expanding its applicability beyond oncology.
Voyager CEO Al Sandrock outlines a focused strategy: remain specialists in neurology, but broaden the therapeutic modalities (gene therapy, proteins, oligonucleotides). This allows them to pursue well-validated CNS targets that are considered "undruggable" by traditional small molecules, which have historically been the only option for crossing the blood-brain barrier.
Colonia Therapeutics' CEO argues that lentiviral delivery is ideal for oncology's required long-term persistence, while LNP delivery is better suited for autoimmune indications needing transient, multi-dose responses. This frames them as complementary technologies for different therapeutic "swim lanes" rather than as direct rivals in a zero-sum game.
T-cell receptor (TCR) therapies offer a significant advantage over monoclonal antibodies by targeting intracellular proteins. They recognize peptides presented on the cell surface, effectively unlocking 90% of the proteome and requiring far fewer target molecules (5-10 copies vs. 1000+) to kill a cancer cell.
An innovative strategy for solid tumors involves using bispecific T-cell engagers to target the tumor stroma—the protective fibrotic tissue surrounding the tumor. This novel approach aims to first eliminate this physical barrier, making the cancer cells themselves more vulnerable to subsequent immune attack.
Create's strategy is not limited to a single cell type. They view success in solid tumors as requiring the programming of all immune cells. Their platform can specifically engineer myeloid cells, T-cells, and NK cells in vivo, orchestrating a coordinated, multi-pronged attack on cancer.
The GSK3 inhibitor was developed for CNS diseases, requiring high specificity and the ability to cross the blood-brain barrier. These same pharmaceutical characteristics—potency and lipophilicity—proved highly advantageous for treating cancer, demonstrating an unexpected but effective therapeutic pivot from neuroscience to oncology.
Glioblastoma evolves under therapeutic pressure, changing its expression and metabolism to resist treatment. Adaptin Bio's platform is designed to be adaptive, allowing them to switch therapeutic payloads (e.g., from APTN-101 to 102) as the tumor changes, effectively staying one step ahead.
While complex gene editing may be challenging in vivo, Colonia's platform presents a novel opportunity: targeting different immune cell types (e.g., T-cells and NK cells) with distinct payloads in a single treatment. This could create synergistic, multi-pronged attacks on tumors, a paradigm distinct from current ex vivo methods which focus on engineering a single cell type.
While many cell therapies rely on complex genetic engineering with viral vectors, Adaptin Bio manipulates patient T-cells without it. This simpler, non-viral process is a strategic choice to reduce costs, speed up manufacturing, and make the therapy accessible to a broader patient population.
The platform doesn't just transport a drug. The T-cells themselves populate the tumor microenvironment, which is naturally 'cold' (lacking immune cells) in glioblastoma. This increases inflammatory activity, making the tumor more susceptible to the delivered therapeutic payload.