Despite significant progress in managing symptoms for autoimmune conditions, very few treatments fundamentally alter the disease's course. The major unmet needs and investment opportunities lie in therapies that can induce remission or target common underlying pathologies like fibrosis, moving beyond mere symptom relief.
Breakthrough drugs aren't always driven by novel biological targets. Major successes like Humira or GLP-1s often succeeded through a superior modality (a humanized antibody) or a contrarian bet on a market (obesity). This shows that business and technical execution can be more critical than being the first to discover a biological mechanism.
For an older patient population, the ultimate goal in prostate cancer treatment might not be a traditional cure, but rather turning it into a quiescent, chronic disease manageable with well-tolerated therapy, similar to HIV. This reframes success as long-term control until a patient dies of other causes.
Crohn's disease is a higher bar for drug approval than ulcerative colitis, often due to fibrotic strictures. Abivax has presented preclinical data suggesting its drug has anti-fibrotic properties. This is a key differentiator, as therapies that fail in Crohn's often lack this effect, providing a mechanistic rationale for potential success.
Early-stage biotech companies struggle to navigate clinical development for autoimmune diseases. Disease-specific foundations hold crucial insights on patient subsets, recruitment, and key opinion leaders, yet the interface between VCs and these foundations is often inefficient and difficult to navigate, leading to missed opportunities and flawed trial execution.
By first targeting T-cell lymphoma, Corvus gathers crucial safety and biologic effect data in humans. This knowledge about the drug's impact on T-cells directly informs and de-risks subsequent trials in autoimmune diseases like atopic dermatitis, creating a capital-efficient development path.
Despite exciting early efficacy data for in vivo CAR-T therapies, the modality's future hinges on the critical unanswered question of durability. How long the therapeutic effects last, for which there is little data, will ultimately determine its clinical viability and applications in cancer versus autoimmune diseases.
The current boom in immunology and autoimmune (I&I) therapeutics is not a separate phenomenon but a direct consequence of capital and knowledge from immuno-oncology. Many of the same biological pathways are being targeted, simply modulated down (for autoimmune) instead of up (for cancer), allowing for rapid therapeutic advancement and platform reuse.
Beyond tackling fatal diseases to increase lifespan, a new wave of biotech innovation focuses on "health span"—the period of life lived in high quality. This includes developing treatments for conditions often dismissed as aging, such as frailty, vision loss, and hearing decline, aiming to improve wellbeing in later decades.
Modern critical care for sepsis only treats the consequences of the disease—organ failure, low blood pressure—with supportive measures like ventilators and IV fluids. There are zero approved therapies that actually treat the underlying root cause: the out-of-control immune response that is actively damaging the patient's body.
GLP-1 drugs cause a precipitous drop in inflammation markers within weeks, much faster than the timeline for weight loss. This independent anti-inflammatory mechanism may explain their efficacy in conditions like knee pain and psoriasis.