After immunotherapy, many colorectal cancer patients have residual nodules on scans that appear to be partial responses. However, ctDNA testing can confirm these are often just scar tissue, not active disease. This provides the confidence to stop therapy at the two-year mark and avoid unnecessary surgeries for what are effectively complete responses.

Related Insights

A key conceptual shift is viewing ctDNA not as a statistical risk marker, but as direct detection of molecular residual disease (MRD). This framing, similar to how a CT scan identifies metastases, explains its high positive predictive value and justifies its use in making critical treatment decisions.

For colorectal cancer patients in surveillance, serial ctDNA testing offers profound reassurance. Data shows that after achieving one year of consistently negative results, the probability of a future recurrence drops to just 0.9%, providing a level of confidence previously unattainable with other methods.

Historically, discussing adjuvant therapy for Stage III colon cancer was quick and straightforward, while Stage II was complex. The advent of ctDNA testing has reversed this dynamic. Stage II decisions are now clearer (treat if positive), while Stage III discussions have become much longer and more nuanced as clinicians integrate ctDNA data with patient preferences.

The INTERCEPT study found only 2% of ctDNA-positive colorectal cancer patients clear the marker without intervention. This stable, high-risk baseline allows small trials to use ctDNA clearance as a rapid endpoint, potentially accelerating the development of new adjuvant therapies.

The practice-changing DYNAMIC trial showed that a ctDNA-guided strategy for stage II colorectal cancer reduces adjuvant chemotherapy use by 50%. Despite this significant de-escalation of treatment, patient outcomes and survival rates were identical to the standard-of-care approach.

AI identified circulating tumor DNA (ctDNA) testing as a highly sensitive method for detecting cancer recurrence earlier than scans or symptoms. Despite skepticism from oncologists who deemed it unproven, the speaker plans to use it for proactive monitoring—a strategy he would not have known about otherwise.

The InVigor11 study was the first to show that detecting recurrence via a ctDNA test before it's visible on scans is not just a prognostic sign, but an actionable clinical state. Intervening with therapy at this early stage was proven to improve patient outcomes, establishing a new paradigm for cancer surveillance.

A study where celecoxib initially failed to show benefit was re-analyzed using ctDNA. The drug provided a substantial survival improvement (HR 0.55-0.58) specifically in ctDNA-positive patients. This demonstrates ctDNA's power not just for prognosis, but as a predictive biomarker to identify which patients will benefit from a targeted therapy.

The interpretation of ctDNA is context-dependent. Unlike in the adjuvant setting, in the neoadjuvant setting, remaining ctDNA positive post-treatment signifies that the current therapy has failed. These high-risk patients need a different therapeutic approach, not an extension of the ineffective one.

While a positive ctDNA test clearly signals the need for adjuvant therapy, a negative result is less actionable for deciding initial treatment. The key prognostic value comes from being *serially* undetectable over time, information that is not available when the immediate post-surgery treatment decision must be made.

ctDNA Distinguishes Scar Tissue From Active Cancer on Ambiguous Post-IO Scans | RiffOn