While AI is a universal trend, its application is highly contextual. In drug discovery, it's used for complex, high-science tasks like protein folding. In the CDMO space, its value lies in streamlining less glamorous but critical functions like communication, paperwork, and process optimization.

Related Insights

AI modeling transforms drug development from a numbers game of screening millions of compounds to an engineering discipline. Researchers can model molecular systems upfront, understand key parameters, and design solutions for a specific problem, turning a costly screening process into a rapid, targeted design cycle.

The power of AI for Novonesis isn't the algorithm itself, but its application to a massive, well-structured proprietary dataset. Their organized library of 100,000 strains allows AI to rapidly predict protein shapes and accelerate R&D in ways competitors cannot match.

The most significant opportunity for AI in healthcare lies not in optimizing existing software, but in automating 'net new' areas that once required human judgment. Functions like patient engagement, scheduling, and symptom triage are seeing explosive growth as AI steps into roles previously held only by staff.

In high-stakes fields like pharma, AI's ability to generate more ideas (e.g., drug targets) is less valuable than its ability to aid in decision-making. Physical constraints on experimentation mean you can't test everything. The real need is for tools that help humans evaluate, prioritize, and gain conviction on a few key bets.

While AI holds long-term promise for molecule discovery, its most significant near-term impact in biotech is operational. The key benefits today are faster clinical trial recruitment and more efficient regulatory submissions. The revolutionary science of AI-driven drug design is still in its earliest stages.

While AI can accelerate the ideation phase of drug discovery, the primary bottleneck remains the slow, expensive, and human-dependent clinical trial process. We are already "drowning in good ideas," so generating more with AI doesn't solve the fundamental constraint of testing them.

AI will create jobs in unexpected places. As AI accelerates the discovery of new drugs and medical treatments, the bottleneck will shift to human-centric validation. This will lead to significant job growth in the biomedical sector, particularly in roles related to managing and conducting clinical trials.

The most significant value from AI is not in automating existing tasks, but in performing work that was previously too costly or complex for an organization to attempt. This creates entirely new capabilities, like analyzing every single purchase order for hidden patterns, thereby unlocking new enterprise value.

According to Immunocore's CEO, the biggest imminent shift in drug development is AI. The critical need is not for AI to replace scientists, but for a new breed of professionals fluent in both their scientific domain and artificial intelligence. Those who fail to adapt will be left behind.

Contrary to fears of displacement, AI tools like 'AI co-scientists' amplify human ingenuity. By solving foundational problems (like protein folding) and automating tedious tasks, AI enables more researchers, even junior ones, to tackle more complex, high-level scientific challenges, accelerating discovery.

AI's Impact Varies: Drug Discovery Gets Complex Modeling, Outsourcing Gets Process Automation | RiffOn