The future of GYN oncology immunotherapy is diverging. For responsive cancers like endometrial, the focus is on refining biomarkers and overcoming resistance. For historically resistant cancers like ovarian, the strategy shifts to using combinatorial approaches (e.g., CAR-NKs, vaccines) to fundamentally alter the tumor microenvironment itself, making it more receptive to an immune response.

Related Insights

The B96 trial's potential approval for platinum-resistant ovarian cancer introduces a new treatment sequencing challenge. Clinicians must decide between this immunotherapy combination and the ADC mervituximab, which has a clear biomarker (foliate receptor alpha). The lack of a reliable biomarker for the B96 regimen complicates this decision-making process for patients.

An innovative strategy for solid tumors involves using bispecific T-cell engagers to target the tumor stroma—the protective fibrotic tissue surrounding the tumor. This novel approach aims to first eliminate this physical barrier, making the cancer cells themselves more vulnerable to subsequent immune attack.

Immuno-oncology is not a one-time fix because cancer cells are described as "smart" adversaries that quickly adapt and develop resistance. The future of treatment lies in staying a step ahead, constantly switching therapeutic mechanisms to outmaneuver the cancer's ability to learn.

The B96 trial's positive outcome in historically immunotherapy-resistant ovarian cancer is not just about adding pembrolizumab. The regimen's success is attributed to the thoughtful use of continuous weekly paclitaxel, a form of metronomic chemotherapy known to have favorable immunogenic effects, which was a deliberate, science-backed choice.

Successful immunotherapies like anti-PD-1 work by shifting the battlefield's arithmetic. They enhance the efficiency of each T-cell, allowing one cell to destroy five or ten cancer cells instead of three. This turns the fight into a 'numbers game' that the immune system can finally win.

For endometrial or cervical cancer patients who progress after receiving a checkpoint inhibitor, re-challenging with a single-agent immunotherapy is a less desirable approach. Emerging data suggests that a combination therapy—such as an ICI paired with a TKI like lenvatinib or a bispecific antibody—offers a more promising chance of response.

To combat immunosuppressive "cold" tumors, new trispecific antibodies are emerging. Unlike standard T-cell engagers that only provide the primary CD3 activation signal, these drugs also deliver the crucial co-stimulatory signal (e.g., via CD28), ensuring full T-cell activation in microenvironments where this second signal is naturally absent.

While immunotherapy was a massive leap forward, Dr. Saav Solanki states the next innovation frontier is combining it with newer modalities. Antibody-drug conjugates (ADCs) and T-cell engagers are being used to recruit the immune system into the tumor microenvironment, helping patients who don't respond to current immunotherapies.

Rather than expecting cell therapies (CAR-T, TIL) to eradicate every cancer cell, Dr. Radvanyi reframes them as powerful adjuvants. Their role is to inflict initial damage, kill tumor cells, and release antigens, creating an opportunity to prime a broader, secondary immune response with other modalities like vaccines or checkpoint inhibitors.

While checkpoint inhibitors are standard for dMMR endometrial cancer, a clear clinical boundary is emerging for the pMMR subgroup. Based on trial data showing no benefit for fully resected disease (e.g., B21 trial), oncologists are not offering immunotherapy to pMMR patients without measurable disease, avoiding significant toxicity without proven efficacy.