The negative ANSA-RAD trial, when contrasted with the positive STAMPEDE trial, demonstrates that patient selection is paramount in adjuvant therapy. The difference in outcomes was driven by risk definition, not the drug. This reinforces that "negative" trials are clinically vital for defining which patient populations do not benefit, preventing widespread overtreatment.
The investigator-led PLUTO trial found docetaxel chemotherapy provided a better overall survival benefit than lutetium in first-line mCRPC. This result directly confronts the common clinical bias against chemotherapy ("chemophobia"), proving that older treatments can still outperform newer targeted agents and should not be prematurely abandoned.
A key hypothesis for why docetaxel showed better overall survival than lutetium in the PLUTO trial is that patients treated with lutetium upfront may become unfit for subsequent chemotherapy. This highlights a critical factor in trial design: the planned therapeutic sequence and a patient's ability to receive later-line treatments significantly impact survival outcomes.
Lutetium faces criticism for its fixed 6-cycle regimen, which may be suboptimal as the PSMA target diminishes with ADT. However, this critique is rarely applied to other drugs like PARP inhibitors, which are given until progression. This highlights a double standard and the tension between using a fixed regimen for regulatory approval versus finding the optimal dose in practice.
In adjuvant bladder cancer trials, ctDNA status is both prognostic and predictive. Patients with positive ctDNA after surgery are at high risk of relapse but benefit from immune checkpoint inhibitors. Conversely, ctDNA-negative patients have a lower risk and derive no benefit, making ctDNA a critical tool to avoid unnecessary, toxic therapy.
Data from the CAPItello trial showed a significant number of patients with PTEN deficiency experienced radiological progression without a corresponding PSA increase. This challenges the standard reliance on PSA for monitoring in high-risk prostate cancer and suggests a need for more frequent, personalized imaging protocols to detect progression earlier.
The FDA is predicted to approve new PARP inhibitors from trials like AMPLITUDE only for BRCA-mutated patients, restricting use to where data is strongest. This contrasts with the EMA's potential for broader approvals or denials. This highlights the diverging regulatory philosophies that create different drug access landscapes in the US and Europe.
Sepsis is not a monolithic condition. The failure of more than 100 immunomodulatory drug trials is likely because they treated all patients the same. The future of sepsis treatment mirrors oncology: subtyping patients based on their specific inflammatory profile to match them with a targeted therapy.
Three 2025 trials (AMPLITUDE, PSMA-addition, CAPItello) introduced personalized therapy for metastatic hormone-sensitive prostate cancer. However, significant benefits were confined to narrow subgroups, like BRCA-mutated patients. This suggests future success depends on even more stringent patient selection, not broader application of targeted agents.
The interpretation of ctDNA is context-dependent. Unlike in the adjuvant setting, in the neoadjuvant setting, remaining ctDNA positive post-treatment signifies that the current therapy has failed. These high-risk patients need a different therapeutic approach, not an extension of the ineffective one.
With pathologic complete response rates approaching 67% in patients completing neoadjuvant EV-Pembro, a majority of cystectomies are now removing cancer-free bladders. This creates an ethical and clinical imperative to rapidly launch prospective trials to validate bladder preservation strategies and avoid overtreatment.