The "Bitter Lesson" is not just about using more compute, but leveraging it scalably. Current LLMs are inefficient because they only learn during a discrete training phase, not during deployment where most computation occurs. This reliance on a special, data-intensive training period is not a scalable use of computational resources.

Related Insights

Even with vast training data, current AI models are far less sample-efficient than humans. This limits their ability to adapt and learn new skills on the fly. They resemble a perpetual new hire who can access information but lacks the deep, instinctual learning that comes from experience and weight updates.

Overly structured, workflow-based systems that work with today's models will become bottlenecks tomorrow. Engineers must be prepared to shed abstractions and rebuild simpler, more general systems to capture the gains from exponentially improving models.

The current limitation of LLMs is their stateless nature; they reset with each new chat. The next major advancement will be models that can learn from interactions and accumulate skills over time, evolving from a static tool into a continuously improving digital colleague.

The excitement around AI often overshadows its practical business implications. Implementing LLMs involves significant compute costs that scale with usage. Product leaders must analyze the ROI of different models to ensure financial viability before committing to a solution.

The history of AI, such as the 2012 AlexNet breakthrough, demonstrates that scaling compute and data on simpler, older algorithms often yields greater advances than designing intricate new ones. This "bitter lesson" suggests prioritizing scalability over algorithmic complexity for future progress.

Richard Sutton, author of "The Bitter Lesson," argues that today's LLMs are not truly "bitter lesson-pilled." Their reliance on finite, human-generated data introduces inherent biases and limitations, contrasting with systems that learn from scratch purely through computational scaling and environmental interaction.

The "bitter lesson" in AI research posits that methods leveraging massive computation scale better and ultimately win out over approaches that rely on human-designed domain knowledge or clever shortcuts, favoring scale over ingenuity.

AI progress was expected to stall in 2024-2025 due to hardware limitations on pre-training scaling laws. However, breakthroughs in post-training techniques like reasoning and test-time compute provided a new vector for improvement, bridging the gap until next-generation chips like NVIDIA's Blackwell arrived.

A critical weakness of current AI models is their inefficient learning process. They require exponentially more experience—sometimes 100,000 times more data than a human encounters in a lifetime—to acquire their skills. This highlights a key difference from human cognition and a major hurdle for developing more advanced, human-like AI.

Richard Sutton, whose "Bitter Lesson" essay was a foundational argument for scaling compute in AI, has publicly aligned with critiques from LLM skeptic Gary Marcus. This surprising shift suggests that the original simplistic interpretation of "more compute is all you need" is being re-evaluated by its own progenitor.

Richard Sutton's 'Bitter Lesson' Implies Current LLMs Are Inefficient Users of Compute | RiffOn